Changes in ryanodine-induced contractures by stimulus frequency in malignant hyperthermia susceptible and malignant hyperthermia nonsusceptible dog skeletal muscle.
نویسندگان
چکیده
Elective diagnosis of malignant hyperthermia depends on halothane and caffeine contracture testing of biopsied skeletal muscle. Ryanodine-induced contractures may provide greater sensitivity and specificity for malignant hyperthermia (MH) diagnosis. This study investigated the effects of ryanodine concentration and stimulus frequency to distinguish between MH susceptible (MHS) and MH non-susceptible (MHN) dogs. Increasing ryanodine concentrations (1, 2.5 and 5 microM) increased peak isometric contracture tension, but similar responses in MHS and MHN muscle precluded use for diagnosis. Time to tension onset and to peak tension decreased with increasing ryanodine concentration, and these times were shorter in MH skeletal muscle. Increasing stimulus frequency (0.1, 0.5 and 1 Hz) decreased the time to tension onset and to peak tension, but the effect was greater in MHN muscle which decreased the difference between MHN and MHS muscle responses. When ryanodine contracture tension onset time was selected to detect MHS muscle, combinations of either 0.1 Hz and 1 microM ryanodine or 0.5 Hz and 1 microM ryanodine reduced the probabilty of a false diagnosis to less than 1%. Similar studies performed on human muscle might identify optimal stimulus frequency and ryanodine concentration for detecting MH in patients.
منابع مشابه
Inhibition of sarcoplasmic Ca2+-ATPase increases caffeine- and halothane-induced contractures in muscle bundles of malignant hyperthermia susceptible and healthy individuals
BACKGROUND Malignant hyperthermia (MH) is triggered by halogenated anaesthetics and depolarising muscle relaxants, leading to an uncontrolled hypermetabolic state of skeletal muscle. An uncontrolled sarcoplasmic Ca2+ release is mediated via the ryanodine receptor. A compensatory mechanism of increased sarcoplasmic Ca2+-ATPase activity was described in pigs and in transfected cell lines. We hypo...
متن کاملIncreased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle.
Mutations in the skeletal muscle RyR1 isoform of the ryanodine receptor (RyR) Ca2+-release channel confer susceptibility to malignant hyperthermia, which may be triggered by inhalational anesthetics such as halothane. Using immunoblotting, we show here that the ryanodine receptor, calmodulin, junctin, calsequestrin, sarcalumenin, calreticulin, annexin-VI, sarco(endo)plasmic reticulum Ca2+-ATPas...
متن کاملTRANSLATIONAL PHYSIOLOGY Increased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle
Glover, Louise, James J. A. Heffron, and Kay Ohlendieck. Increased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle. J Appl Physiol 96: 11–18, 2004. First published September 5, 2003; 10.1152/japplphysiol.00537.2003.—Mutations in the skeletal muscle RyR1 isoform of the ryanodine receptor (RyR) Ca -release chan...
متن کاملThe differential effect of halothane and 1,2-dichlorohexafluorocyclobutane on in vitro muscle contractures of patients susceptible to malignant hyperthermia.
UNLABELLED Malignant hyperthermia (MH) is an autosomal dominant, potentially fatal pharmacogenetic disorder of skeletal muscle. Approximately half of all known MH families show a linkage to the ryanodine receptor type 1 (RY1) gene. Although our knowledge of the diagnosis, genetics, and therapy of MH has improved, the exact pathogenesis and the role of volatile anesthetics as trigger substances ...
متن کاملMg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in skeletal muscle from humans susceptible to malignant hyperthermia.
BACKGROUND Recent work suggests that impaired Mg(2+) regulation of the ryanodine receptor is a common feature of both pig and human malignant hyperthermia. Therefore, the influence of [Mg(2+)] on halothane-induced Ca(2+) release from the sarcoplasmic reticulum was studied in malignant hyperthermia-susceptible (MHS) or -nonsusceptible (MHN) muscle. METHODS Vastus medialis fibers were mechanica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 282 3 شماره
صفحات -
تاریخ انتشار 1997